Self Assessment Test 3
Based on Chapter 1
Time: 1 hour
M.M. 25
Note: Q. 1 - 2 carry 1 mark each, Q. 3 - 5 carry 2 marks each, Q. 6-8 carry 3 marks each and Q.9 - 10 carry 4 marks each.
-
Find the product: $(3-\sqrt{5})(3+\sqrt{5})$.
-
Express $0.3\overline{47}$ (recurring decimal) in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
-
Find a point corresponding to $\frac{5}{2} + \sqrt{3}$ on the number line.
-
Rationalise the denominator of $\frac{1}{\sqrt{5}+\sqrt{2}}$ and subtract it from $\sqrt{5}-\sqrt{2}$.
-
Evaluate:
(i) $(32768)^{\frac{1}{5}}$
(ii) $\left(\frac{-1}{27}\right)^{-\frac{1}{3}}$
-
Simplify: $8\sqrt{18} + 4\sqrt{72} - 5\sqrt{32} + 3\sqrt{98} + 2\sqrt{50}$.
-
Find two irrational numbers in decimal form between $\sqrt{2}$ and $2$.
-
If $\sqrt{5}=2.236$ and $\sqrt{20}=4.472$, find the value of $\frac{49}{\sqrt{125}-\sqrt{45}}$.
-
If $\frac{(\sqrt{2}-3)}{(\sqrt{2}+3)} - \frac{(\sqrt{2}+3)}{(\sqrt{2}-3)} = e + f\sqrt{2}$, find e and f where e and f are rational numbers.
-
If $z = 5 + 2\sqrt{6}$, find:
(i) $\sqrt{z} + \frac{1}{\sqrt{z}}$
(ii) $\sqrt{z} - \frac{1}{\sqrt{z}}$
No comments:
Post a Comment