1. By what number should $(2/7)^{-2}$ be divided so that the quotient becomes 49?
Solution:
$$ \frac{(2/7)^{-2}}{x} = 49 \Rightarrow x = \frac{(2/7)^{-2}}{49} = 1 $$2. Find x so that $(3/8)^{14} \times (8/3)^{-9} = (3/8)^{2x-1}$.
Solution:
$$ 14 - 9 = 2x - 1 \Rightarrow x = \frac{14 - 9 + 1}{2} = 3 $$3. Find the value of a/b if $(a/b)^{-6}=(2/7)^{-6} \times (14/9)^{-6}$.
Solution:
$$ (a/b)^{-6} = (2/7)^{-6} \times (14/9)^{-6} \Rightarrow \frac{a}{b} = \frac{2 \times 14}{7 \times 9} = \frac{4}{3} $$4. Simplify $(3^{-5} \times 10^{-5} \times 125) / (5^{-7} \times 6^{-5})$.
Solution:
$$ \frac{3^{-5} \times 10^{-5} \times 125}{5^{-7} \times 6^{-5}} = 6^5 \times 5^2 = 90000 $$5. Mass of Earth is $5.97 \times 10^{24}$ kg and mass of Moon is $7.35 \times 10^{22}$ kg. What is the total mass?
Solution:
$$ 5.97 \times 10^{24} + 7.35 \times 10^{22} = 5.97 \times 10^{24} + 0.0735 \times 10^{24} = 6.0435 \times 10^{24} $$ kg
No comments:
Post a Comment